Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Adv Res ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636588

RESUMEN

INTRODUCTION: Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer with an extremely dismal prognosis and few treatment options. As a desmoplastic tumor, TNBC tumor cells are girdled by stroma composed of cancer-associated fibroblasts (CAFs) and their secreted stromal components. The rapidly proliferating tumor cells, together with the tumor stroma, exert additional solid tissue pressure on tumor vasculature and surrounding tissues, severely obstructing therapeutic agent from deep intratumoral penetration, and resulting in tumor metastasis and treatment resistance. OBJECTIVES: Fucoxanthin (FX), a xanthophyll carotenoid abundant in marine algae, has attracted widespread attention as a promising alternative candidate for tumor prevention and treatment. Twist is a pivotal regulator of epithelial to mesenchymal transition, and its depletion has proven to sensitize antitumor drugs, inhibit metastasis, reduce CAFs activation and the following interstitial deposition, and increase tumor perfusion. The nanodrug delivery system co-encapsulating FX and nucleic acid drug Twist siRNA (siTwist) was expected to form a potent anti-TNBC therapeutic cyclical feedback loop. METHODS AND RESULTS: Herein, our studies constituted a novel self-assembled polymer nanomedicine (siTwist/FX@HES-CH) based on the amino-modified hydroxyethyl starch (HES-NH2) grafted with hydrophobic segment cholesterol (CH). The MTT assay, flow cytometry apoptosis analysis, transwell assay, western blot, and 3D multicellular tumor spheroids growth inhibition assay all showed that siTwist/FX@HES-CH could kill tumor cells and inhibit their metastasis in a synergistic manner. The in vivo anti-TNBC efficacy was demonstrated that siTwist/FX@HES-CH remodeled tumor microenvironment, facilitated interstitial barrier crossing, killed tumor cells synergistically, drastically reduced TNBC orthotopic tumor burden and inhibited lung metastasis. CONCLUSION: Systematic studies revealed that this dual-functional nanomedicine that targets both tumor cells and tumor microenvironment significantly alleviates TNBC orthotopic tumor burden and inhibits lung metastasis, establishing a new paradigm for TNBC therapy.

2.
J Ethnopharmacol ; 326: 117968, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38428655

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Urolithiasis is one of the oldest and most widespread urological diseases suffered globally. In the long history of Traditional Chinese Medicine, there're numerous herbs documented with strangury-relieving properties playing crucial roles in treating various urological disorders, including dysuria, hematuria, and renal colic, etc., which may be caused by urolithiasis. Exploring these herbs may reveal safer, more effective, and cost-efficient drugs and therapies for urolithiasis. AIM OF THE STUDY: This study aims to assess the anti-urolithiasis efficacy and safety of 46 Chinese traditional and folk herbal drugs using the fruit fly (Drosophila melanogaster) kidney stone model, in order to identify the most valuable ethnomedicinal materials. MATERIALS AND METHODS: Water extract and 50% ethanol extract of each herb were prepared respectively. 0.2% (w/w) sodium oxalate was chosen as appropriate lithogenic agent through fruit fly life span study. Male fruit-flies within three days of emergence were aged for an additional three days, then were randomly divided into experimental groups, model group and control groups (n = 20). The flies in blank control group, model group and positive control group were fed with standard food, standard food containing 0.2% sodium oxalate, standard food containing 0.2% sodium oxalate and 3% (w/w) Garcinia cambogia extract, respectively. Meanwhile, flies in the experimental groups were raised on standard food containing 0.2% sodium oxalate and 3% (w/w) herbal extract. The anti-urolithiasis capability of the extracts was evaluated using stone area ratio (the stone area divided by the area of the Malpighian tubule) and stone-clearing rate. Additionally, the 7-day mortality rate was employed as an indicator of safety. RESULTS: Out of the 46 herbs, 24 exhibited significant anti-urolithiasis effects in their water extracts. Among them, Herba Nephrolepidis, Herba Humuli, Herba Desmodii Styracifolii, Cortex Plumeriae Rubrae, and Herba Mimosae Pudicae showed us a low 7-day mortality rate of fruit-flies as well. However, only a limited number of herbal extracts (8 out of 46) showed obvious anti-urolithiasis activity in their 50% ethanol extracts. CONCLUSION: Highly potential anti-urolithiasis candidates were discovered from strangury-relieving herbs recorded in classical Traditional Chinese Medicine works, highlighting the significant value of traditional and folk ethnopharmacological knowledge.


Asunto(s)
Cálculos Renales , Urolitiasis , Animales , Masculino , Drosophila melanogaster , Disuria/tratamiento farmacológico , Extractos Vegetales/efectos adversos , Urolitiasis/tratamiento farmacológico , Cálculos Renales/tratamiento farmacológico , Ácido Oxálico/uso terapéutico , Agua , Etanol/uso terapéutico
3.
Nat Commun ; 15(1): 625, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245536

RESUMEN

Olefin/paraffin separations are among the most energy-intensive processes in the petrochemical industry, with ethylene being the most widely consumed chemical feedstock. Adsorptive separation utilizing molecular sieving adsorbents can optimize energy efficiency, whereas the size-exclusive mechanism alone cannot achieve multiple olefin/paraffin sieving in a single adsorbent. Herein, an unprecedented sieving adsorbent, BFFOUR-Cu-dpds (BFFOUR = BF4-, dpds = 4,4'-bipyridinedisulfide), is reported for simultaneous sieving of C2-C4 olefins from their corresponding paraffins. The interlayer spaces can be selectively opened through stronger guest-host interactions induced by unsaturated C = C bonds in olefins, as opposed to saturated paraffins. In equimolar six-component breakthrough experiments (C2H4/C2H6/C3H6/C3H8/n-C4H8/n-C4H10), BFFOUR-Cu-dpds can simultaneously divide olefins from paraffins in the first column, while high-purity ethylene ( > 99.99%) can be directly obtained through the subsequent column using granular porous carbons. Moreover, gas-loaded single-crystal analysis, in-situ infrared spectroscopy measurements, and computational simulations demonstrate the accommodation patterns, interaction bonds, and energy pathways for olefin/paraffin separations.

4.
Phys Rev Lett ; 131(15): 150804, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37897768

RESUMEN

A quantum memory with the performances of low noise, high efficiency, and high bandwidth is of crucial importance for developing practical quantum information technologies. However, the excess noises generated during the highly efficient processing of quantum information inevitably destroy quantum state. Here, we present a quantum memory with built-in excess-noise eraser by integrating a photon-correlated quantum interferometry in quantum memory, where the memory efficiency can be enhanced and the excess noises can be suppressed to the vacuum level via destructive interference. This quantum memory is demonstrated in a rubidium vapor cell with a 10-ns-long photonics signal. We observe ∼80% noise suppression, the write-in efficiency enhancement from 87% to 96.2% without and with interferometry, and the corresponding memory efficiency excluding the noises from 70% to 77%. The fidelity is 93.7% at the single-photon level, significantly exceeding the no-cloning limit. Such interferometry-integrated quantum memory, the first expansion of quantum interference techniques to quantum information processing, simultaneously enables low noise, high bandwidth, high efficiency, and easy operation.

5.
Rev Sci Instrum ; 92(4): 045103, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243417

RESUMEN

A coil system to generate a uniform field is urgently needed in quantum experiments. However, general coil configurations based on the analytical method have not considered practical restrictions, such as the region for coil placement due to holes in the center of the magnetic shield, which could not be directly applied in most of the quantum experiments. In this paper, we develop a coil design method for quantum experiments using hybrid machine learning. The algorithm part consists of a machine learner based on an artificial neural network and a differential evolution (DE) learner. The cooperation of both learners demonstrates its higher efficiency than a single DE learner and robustness in the coil optimization problem compared with analytical proposals. With the help of a DE learner, in numerical simulation, a machine learner can successfully design coaxial coil systems that generate fields whose relative inhomogeneity in a 25 mm-long central region is ∼10-6 under constraints. In addition, for experiments, a coil system with 0.069% inhomogeneity of the field, designed by a machine learner, is constructed, which is mainly limited by machining the precision of the circuit board. Benefitting from machine learning's high-dimension optimization capabilities, our coil design method is convenient and has potential for various quantum experiments.

6.
J Biomed Nanotechnol ; 17(12): 2351-2363, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34974858

RESUMEN

Due to its high heterogeneity and aggressiveness, cytotoxic chemotherapy is still a mainstay treatment for triple negative breast cancer. Unfortunately, the above mentioned has not significantly ameliorated TNBC patients and induces drug resistance. Exploring the mechanisms underlying the chemotherapy sensitivity of TNBC and developing novel sensitization strategies are promising approaches for improving the prognosis of patients. Rad51, a key regulator of DNA damage response pathway, repairs DNA damage caused by genotoxic agents through "homologous recombination repair." Therefore, Rad51 inhibition may increase TNBC cell sensitivity to anticancer agents. Based on these findings, we first designed Rad51 siRNA to inhibit the Rad51 protein expression in vitro and evaluated the sensitivity of TNBC cells to doxorubicin. Subsequently, we constructed discoidal porous silicon microparticles (pSi) and encapsulated discoidal 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes/siRad51 (PS-DOPC/siRad51) to explore the synergistic antitumor effects of siRad51 and doxorubicin on two mouse models of TNBC in vivo. Our in vitro studies indicated that siRad51 enhanced the efficacy of DOX chemotherapy and significantly suppressed TNBC cell proliferation and metastasis. This effect was related to apoptosis induction and epithelial to mesenchymal transition (EMT) inhibition. siRad51 altered the expression of apoptosis- and EMT-related proteins. In orthotopic and lung metastasis xenograft models, the administration of PS-DOPC/siRad51 in combination with DOX significantly alleviated the primary tumor burden and lung metastasis, respectively. Our current studies present an efficient strategy to surmount chemotherapy resistance in TNBC through microvector delivery of siRad51.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Línea Celular Tumoral , Proliferación Celular , Doxorrubicina , Transición Epitelial-Mesenquimal , Humanos , Ratones , Porosidad , ARN Interferente Pequeño/genética , Recombinasa Rad51/genética , Silicio , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Int J Nanomedicine ; 15: 9587-9610, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33293809

RESUMEN

Bacterial infections are the main infectious diseases and cause of death worldwide. Antibiotics are used to treat various infections ranging from minor to life-threatening ones. The dominant route to administer antibiotics is through oral delivery and subsequent gastrointestinal tract (GIT) absorption. However, the delivery efficiency is limited by many factors such as low drug solubility and/or permeability, gastrointestinal instability, and low antibacterial activity. Nanotechnology has emerged as a novel and efficient tool for targeting drug delivery, and a number of promising nanotherapeutic strategies have been widely explored to overcome these obstacles. In this review, we explore published studies to provide a comprehensive understanding of the recent progress in the area of orally deliverable nano-antibiotic formulations. The first part of this article discusses the functions and underlying mechanisms by which nanomedicines increase the oral absorption of antibiotics. The second part focuses on the classification of oral nano-antibiotics and summarizes the advantages, disadvantages and applications of nanoformulations including lipid, polymer, nanosuspension, carbon nanotubes and mesoporous silica nanoparticles in oral delivery of antibiotics. Lastly, the challenges and future perspective of oral nano-antibiotics for infection disease therapy are discussed. Overall, nanomedicines designed for oral drug delivery system have demonstrated the potential for the improvement and optimization of currently available antibiotic therapies.


Asunto(s)
Antibacterianos/administración & dosificación , Infecciones Bacterianas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/administración & dosificación , Nanopartículas/química , Administración Oral , Antibacterianos/farmacocinética , Antibacterianos/uso terapéutico , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Humanos , Absorción Intestinal/efectos de los fármacos , Lípidos/química , Nanotubos de Carbono/química , Polímeros/química , Dióxido de Silicio/química , Solubilidad
8.
IEEE Trans Biomed Circuits Syst ; 12(5): 1076-1087, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30010593

RESUMEN

A wireless intracranial pressure (ICP) monitoring system based on the air pressure sensing is proposed in this work. The proposed system is composed of an implantable ICP sensing device and a portable wireless data recorder. The ICP sensing device consists of an air pressure sensor, an ultra-thin air pouch for pressure sensing, and a low-power dedicated system-on-a-chip (SoC) for the data acquisition control and wireless transmission. The SoC consists of a power management unit, a wake-up controller, the sensor interface, a wireless transmitter, and the workflow control logic. The SoC is fabricated in 0.18 µm CMOS technology with a die area of 3.04 mm × 2 mm. Experimental results show that the prototype implantable ICP device has achieved a resolution of 0.2 mmHg and a battery lifetime of 1 week with a 3 V 50 mAh battery. The ICP device has been tested in the liquid environment. The nonlinearity error is less than ±0.4 mmHg for the full measurement range of -20 to +150 mmHg. Compared to the other implantable wireless ICP solutions in the literature, the proposed system alleviates the biocompatibility issue and increases the measurement accuracy.


Asunto(s)
Presión Intracraneal/fisiología , Monitoreo Fisiológico/métodos , Algoritmos , Animales , Monitoreo Fisiológico/instrumentación , Prótesis e Implantes , Porcinos , Transistores Electrónicos , Tecnología Inalámbrica
9.
J Colloid Interface Sci ; 523: 110-120, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29614420

RESUMEN

The amino- and phosphorus-codoped (N,P-codoped) porous carbons derived from oil-tea shells were facilely fabricated through a combination of phosphoric acid (H3PO4) activation and amino (polyethylenimine, PEI) modification method. The as-synthesized carbon adsorbents were systematically characterized and evaluated for Cr(VI) removal in aqueous solutions. The relationship between adsorbent properties and adsorption behaviors was illustrated. Moreover, the influences of contact time, initial Cr(VI) concentration, pH, coexisting anions and temperature were also investigated. The adsorption behavior of Cr(VI) could be perfectly described by the pseudo-second-order kinetic model and Sips adsorption model. The maximum adsorption capacity of Cr(VI) on the carbon adsorbents synthesized in this work was 355.0 mg/g, and this excellent Cr(VI) capacity could be sustained with other coexisting anions. In addition to high surface area and suitable pore size distribution, the high Cr(VI) removal capacity is induced by rich heteroatoms incorporation and the Cr(VI) removal mechanism was clearly illustrated. Furthermore, the continuous column breakthrough experiment on obtained N,P-codoped carbon was conducted and well fitted by the Thomas model. This work revealed that PEI modification and P-containing groups could significantly enhance Cr(VI) adsorption capacity and make these N,P-codoped biomass-derived carbons potent adsorbents in practical water treatment applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...